Abstract

Phylogenetic methods have recently been rediscovered in several interesting areas among which immunodynamics, epidemiology and many branches of evolutionary dynamics. In many interesting cases the reconstruction of a correct phylogeny is blurred by high mutation rates and/or horizontal transfer events. As a consequence, a divergence arises between the true evolutionary distances and the distances between pairs of taxa as inferred from the available data, making the phylogenetic reconstruction a challenging problem. Mathematically this divergence translates in the non-additivity of the actual distances between taxa and the quest for new algorithms able to efficiently cope with these effects is wide open. In distance-based reconstruction methods, two properties of additive distances were extensively exploited as antagonist criteria to drive phylogeny reconstruction: on the one hand a local property of quartets, i.e. sets of four taxa in a tree, the four-point condition; on the other hand, a recently proposed formula that allows to write the tree length as a function of the distances between taxa, the Pauplin's formula. A deeper comprehension of the effects of the non-additivity on the inspiring principles of the existing reconstruction algorithms is thus of paramount importance. In this paper we present a comparative analysis of the performances of the most important distance-based phylogenetic algorithms. We focus in particular on the dependence of their performances on two main sources of non-additivity: back-mutation processes and horizontal transfer processes. The comparison is carried out in the framework of a set of generative algorithms for phylogenies that incorporate non-additivity in a tunable way.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.