Abstract

A distance automaton is a (nondeterministic finite) automaton which is equipped with a nonnegative cost function on its transitions. The distance of a word recognized by such a machine quantifies the expenses associated with the recognition of this word. The distance of a distance automaton is the maximal distance of a word recognized by this machine or is infinite, depending on whether or not a maximum exists. We present distance automata havingn states and distance 2 n − 2. As a by-product we obtain regular languages having exponential finite order. Given a finitely ambiguous distance automaton withn states, we show that either its distance is at most 3 n − 1, or the growth of the distance in this machine is linear in the input length. The infinite distance problem for these distance automata is NP-hard and solvable in polynomial space. The infinite-order problem for regular languages is PSPACE-complete.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.