Abstract

Mouse alcohol dehydrogenase 1 (Adh1) gene expression occurs at high levels in liver and adrenal, moderate levels in kidney and intestine, low levels in a number of other tissues, and is undetectable in thymus, spleen and brain by Northern analysis. In transgenic mice, a minigene construct containing 10 kb of upstream and 1.5 kb of downstream flanking sequence directs expression in kidney, adrenal, lung, epididymis, ovary and skin but promotes ectopic expression in thymus and spleen while failing to control expression in liver, eye, intestine and seminal vesicle. Cosmids containing either 7 kb of upstream and 21 kb of downstream or 12 kb of upstream and 23 kb of downstream sequence flanking genetically marked Adh1 additionally promotes seminal vesicle expression suggesting downstream or intragenic sequence controls expression in this tissue. However, expression in liver, adrenal, or intestine is not promoted. The Adh1a allele on the cosmid expresses an enzyme electrophoretically distinct from that of the endogenous Adh1b allele, and presence of the heterodimeric enzyme in expressing tissues confirms that transgene activity occurs in the same cell-type as the endogenous gene. Transgene expression levels promoted by cosmids were at physiologically relevant amounts and exhibited greater copy-number dependence than observed with minigenes. Transgene mRNA expression correlated with expression measured at the enzyme level. A bacterial artificial chromosome containing 110 kb of 5′- and 104 kb of 3′-flanking sequence surrounding the Adh1 gene promoted expression in tissues at levels comparable to the endogenous gene most importantly including liver, adrenal and intestinal tissue where high level Adh1 expression occurs. Transgene expression in liver was in the same cell types as promoted by the endogenous gene. Although proximal elements extending 12 kb upstream and 23 kb downstream of the Adh1 gene promote expression at physiologically relevant levels in most tissues, more distal elements are additionally required to promote normal expression levels in liver, adrenal and intestinal tissue where Adh1 is most highly expressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.