Abstract
Gas phase studies of dissociative electron attachment to simple alkyl (CF(3)SO(3)CH(3)) and aryl (C(6)H(5)SO(3)CF(3) and CF(3)SO(3)C(6)H(4)CH(3)) triflates, model molecules of nonionic photoacid generators for modern lithographic applications, were performed. The fragmentation pathways under electron impact below 10 eV were identified by means of crossed electron-molecular beam mass spectrometry. Major dissociation channels involved C-O, S-O, or C-S bond scissions in the triflate moiety leading to the formation of triflate (OTf(-)), triflyl (Tf(-)), or sulfonate (RSO(3)(-)) anions, respectively. A resonance leading to C-O bond breakage and OTf(-) formation in alkyl triflates occurred at electron energies about 0.5 eV lower than the corresponding resonance in aryl triflates. A resonance leading to S-O bond breakage and Tf(-) formation in aryl triflates occurred surprisingly at the same electron energies as C-O bond breakage. In case of alkyl triflates S-O bond breakage required 1.4 eV higher electron energies to occur and proceeded with substantially lower yields than in aryl triflates. C-S bond scission occurred for all presently studied triflates at energies close to 3 eV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.