Abstract
The two dissociation channels of HOOH, namely, HOOH and HOOH, in water and methanol are investigated using umbrella-sampling ab initio molecular dynamics. Our potential of mean force calculations reveals the HOOH dissociation to be more favorable in methanol with a free energy barrier of 7.56 kcal/mol, while the HOOH dissociation possesses a free energy barrier of 11.46 kcal/mol. In water, the HOOH dissociation channel is more favorable (8.25 kcal/mol), while the HOOH dissociation process requires a higher free energy (11.28 kcal/mol). Such reaction favorability can be explained by inspecting the formation of secondary radical species during the course of multiple hydrogen donating-accepting processes in each reaction channel. The radical species, that is, H3 O• (observed in water) and CH3 OH2• (observed in methanol), are the first subordinate species upon the HOOH dissociation. For the HOOH dissociation channel in methanol, the secondary species such as water and formaldehyde can be observed, while the re-generation of HOOH in water can be spotted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.