Abstract
When coordinating movements, the nervous system often has to decide how to distribute work across a number of redundant effectors. Here, we show that humans solve this problem by trying to minimize both the variability of motor output and the effort involved. In previous studies that investigated the temporal shape of movements, these two selective pressures, despite having very different theoretical implications, could not be distinguished; because noise in the motor system increases with the motor commands, minimization of effort or variability leads to very similar predictions. When multiple effectors with different noise and effort characteristics have to be combined, however, these two cost terms can be dissociated. Here, we measure the importance of variability and effort in coordination by studying how humans share force production between two fingers. To capture variability, we identified the coefficient of variation of the index and little fingers. For effort, we used the sum of squared forces and the sum of squared forces normalized by the maximum strength of each effector. These terms were then used to predict the optimal force distribution for a task in which participants had to produce a target total force of 4–16 N, by pressing onto two isometric transducers using different combinations of fingers. By comparing the predicted distribution across fingers to the actual distribution chosen by participants, we were able to estimate the relative importance of variability and effort of 1∶7, with the unnormalized effort being most important. Our results indicate that the nervous system uses multi-effector redundancy to minimize both the variability of the produced output and effort, although effort costs clearly outweighed variability costs.
Highlights
The motor system is highly redundant: the same task can always be accomplished by many different sequences of motor commands [1]
By determining the form of this cost function, and by assuming that the nervous system had sufficient exploration of the task dynamics to find an optimal solution, we can make testable predictions about how biological movements should be produced under a given task constraint
We show that subjects coordinate the two fingers to minimize mainly effort, and variability, in a proportion of 7:1. This result suggests that the nervous system learns to coordinate different muscles or limbs by considering both effort and noise information simultaneously
Summary
The motor system is highly redundant: the same task can always be accomplished by many different sequences of motor commands [1] Part of this redundancy is caused by the fact that there are often multiple muscles or effectors that can produce the same desired effect. When moving the wrist, we combine the action of different forearm muscles in a predictable, cosine-tuning-like fashion [2]. To explain these regularities, we can ask why the brain is coordinating movements this way [3], i.e. we can propose a hypothetical cost function that the biological system minimized over the course of learning. By determining the form of this cost function, and by assuming that the nervous system had sufficient exploration of the task dynamics to find an optimal solution, we can make testable predictions about how biological movements should be produced under a given task constraint
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.