Abstract

Small-object manipulation is essential in numerous human activities, although its neural bases are still essentially unknown. Recent functional imaging studies have shown that precision grasping activates a large bilateral frontoparietal network, including ventral (PMv) and dorsal (PMd) premotor areas. To dissociate the role of PMv and PMd in the control of hand and finger movements, we produced, by means of transcranial magnetic stimulation (TMS), transient virtual lesions of these two areas in both hemispheres, in healthy subjects performing a grip-lift task with their right, dominant hand. We found that a virtual lesion of PMv specifically impaired the grasping component of these movements: a lesion of either the left or right PMv altered the correct positioning of fingers on the object, a prerequisite for an efficient grasping, whereas lesioning the left, contralateral PMv disturbed the sequential recruitment of intrinsic hand muscles, all other movement parameters being unaffected by PMv lesions. Conversely, we found that a virtual lesion of the left PMd impaired the proper coupling between the grasping and lifting phases, as evidenced by the TMS-induced delay in the recruitment of proximal muscles responsible for the lifting phase; lesioning the right PMd failed to affect dominant hand movements. Finally, an analysis of the time course of these effects allowed us to demonstrate the sequential involvement of PMv and PMd in movement preparation. These results provide the first compelling evidence for a neuronal dissociation between the different phases of precision grasping in human premotor cortex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.