Abstract

This study focuses on dissipativity-based fault detection for multiple delayed uncertain switched Takagi-Sugeno fuzzy stochastic systems with intermittent faults and unmeasurable premise variables. Nonlinear dynamics, exogenous disturbances, and measurement noise are also considered. In contrast to the existing study works, there is a wider range of applications. An observer is explored to detect faults. A controller is studied to stabilize the considered system. A piecewise fuzzy Lyapunov function is collected to obtain delay-dependent sufficient conditions by means of linear matrix inequalities. The designed observer has less conservatism. In addition, the strict [Formula: see text]dissipativity performance is achieved in the residual dynamic. Besides, the elaborate H∞ performance and the elaborate H_ performance are also acquired. Finally, the availability of the method in this study is verified through two simulation examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.