Abstract
This paper investigates the problem of dissipativity-based asynchronous fuzzy integral sliding mode control (AFISMC) for nonlinear Markov jump systems represented by Takagi-Sugeno (T-S) models, which are subject to external noise and matched uncertainties. Since modes of original systems cannot be directly obtained, the hidden Markov model is employed to detect mode information. With the detected mode and the parallel distributed compensation approach, a suitable fuzzy integral sliding surface is devised. Then using Lyapunov function, a sufficient condition for the existence of sliding mode controller gains is developed, which can also ensure the stochastic stability of the sliding mode dynamics with a satisfactory dissipative performance. An AFISMC law is proposed to drive system trajectories into the predetermined sliding mode boundary layer in finite time. For the case with unknown bound of uncertainties, an adaptive AFISMC law is developed as well. The studied T-S fuzzy Markov jump systems involve both continuous-time and discrete-time domains. Finally, some simulation results are presented to demonstrate the applicability and effectiveness of the proposed approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.