Abstract

Dissipative particle dynamics, a simulation technique appropriate at mesoscopic scales, has been applied to investigate the interfaces in immiscible binary A/B homopolymer blends and in the ternary systems with their block copolymers. For the binary blends, the interfacial tension increases and the interface thickness decreases with increasing Flory-Huggins interaction parameter chi while the homopolymer chain length is fixed. However, when the chi parameter and one of the homopolymer chain length is fixed, increasing another homopolymer chain length will induce only a small increase on interfacial tension and slight decrease on interface thickness. For the ternary blends, adding the A-b-B block copolymer will reduce the interfacial tension. When the mole number of the block copolymer is fixed, longer block chains have higher efficiency on reducing the interfacial tension than the shorter ones. But for the block copolymers with fixed volume fraction, shorter chains will be more efficient than the longer ones on reducing the interfacial tension. Increasing the block copolymer concentration reduces interfacial tension. This effect is more prominent for shorter block copolymer chains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.