Abstract
This paper addresses the dissipative control problem for nonlinear Markovian jump systems subject to actuator failures and mixed time-delays, where the mixed time-delays consist of both discrete and distributed time-delays and are mode-dependent. The purpose of the problem under investigation is to design a state feedback controller such that, in the presence of actuator failures and mixed time-delays, the closed-loop system is asymptotically stable in the mean square sense while achieving the pre-specified dissipativity. By constructing a Lyapunov–Krasovskii functional and using a completing square approach, sufficient conditions are proposed for the existence of the desired controller in terms of the solvability of certain Hamilton–Jacobi inequalities. Finally, an illustrative numerical example is provided to demonstrate the effectiveness of the developed control scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.