Abstract

In this study, the dissimilar friction stir welding (FSW) butt joints between aluminum alloy 5754-H114 and commercially pure copper were investigated. The thickness of welded plates was 4 mm and the aluminum plate was placed on the advancing side. In order to obtain a suitable flow and a better material mixing, a 1-mm offset was considered for the aluminum plate, toward the butt centerline. For investigating the microstructure and mechanical properties of FSWed joints, optical microscopy and mechanical tests (i.e., uniaxial tensile test and microhardness) were used, respectively. Furthermore, the analysis of intermetallic compounds and fracture surface was examined by scanning electron microscopy and X-ray diffraction. The effect of heat generation on the mechanical properties and microstructure of the FSWed joints was investigated. The results showed that there is an optimum amount of heat input. The intermetallic compounds formed in FSWed joints were Al4Cu9 and Al2Cu. The best results were found in joints with 1000 rpm rotational speed and 100 mm/min travel speed. The tensile strength was found as 219 MPa, which reached 84% of the aluminum base strength. Moreover, maximum value of the microhardness of the stir zone (SZ) was attained as about 120 HV, which was greatly depended on the grain size, intermetallic compounds and copper pieces in SZ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.