Abstract
Craniofrontonasal syndrome (CFNS) is an X-linked malformation syndrome with variable phenotype that is caused by mutations in the ephrin-B1 gene (EFNB1). Over 50% of EFNB1 mutations result in premature termination codons that may elicit mRNA degradation by the nonsense-mediated decay pathway. To assess the effects of various mutations at the transcript level, expression of EFNB1 mRNA was studied by RT-PCR in fibroblast cultures established from CFNS female patients. Compared to the wild-type and two missense mutation alleles, severe depletion of transcripts was observed for mutant alleles harbouring either splice site mutation c.407-2A>T at the exon 2/3 boundary or frameshift mutation c.377_384delTCAAGAAG in exon 2. In contrast, escape from mRNA decay was observed for mutation c.614_615delCT, which generates a premature termination codon close to the 3'-end of the penultimate exon 4 disobeying the '50-55 bp' rule. These results suggest differential degradation of mutant EFNB1 transcripts by the nonsense-mediated mRNA decay pathway. Although the clinical phenotypes of the patients were not highly suggestive of a phenotype-genotype correlation, the two female patients were diagnosed with diaphragmatic hernia harbouring putative ephrin-B1 truncating mutations. Previously, disease manifestation in heterozygous females had been attributed mainly to cellular interference of divergent cell populations expressing wild-type or mutant EFNB1, depending on the pattern of X-inactivation. Upon clonal expansion of patient cells with either the wild-type or mutant EFNB1 on the active X-chromosome, we were able to separate mutant and wild-type EFNB1-expressing cells in vitro, further supporting the concept of cellular interference in CFNS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.