Abstract

Proper development of fetal germ cells (FGCs) is vital for the precise transmission of genetic and epigenetic information through generations. The transcriptional landscapes of human FGC development have been revealed; however, the epigenetic reprogramming process of FGCs remains elusive. Here, we profiled the genome-wide DNA methylation and chromatin accessibility of human FGCs at different phases as well as gonadal niche cells at single-cell resolution. First, we found that DNA methylation levels of FGCs changed in a temporal manner, whereas FGCs at different phases in the same embryo exhibited comparable DNA methylation levels and patterns. Second, we revealed the phase-specific chromatin accessibility signatures at the promoter regions of a large set of critical transcription factors and signaling pathway genes. We also identified potential distal regulatory elements including enhancers in FGCs. Third, compared with other hominid-specific retrotransposons, SVA_D might have a broad spectrum of binding capacity for transcription factors, including SOX15 and SOX17. Finally, using an in vitro culture system of human FGCs, we showed that the BMP signaling pathway promoted the cell proliferation of FGCs, and regulated the WNT signaling pathway by orchestrating the chromatin accessibility of its ligand genes. Our single-cell epigenomic atlas and functional assays provide valuable insights for understanding the strongly heterogeneous, unsynchronized, yet highly robust nature of human germ cell development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.