Abstract
Primary open angle glaucoma (POAG) is one of the most common causes of permanent blindness in the world. Recent studies have originated the hypothesis that POAG could be considered as a central nervous system pathology which results in secondary visual involvement. The aim of this study is to assess possible structural whole brain connectivity alterations in POAG by combining multi-shell diffusion weighted imaging, multi-shell multi-tissue probabilistic tractography, graph theoretical measures and a newly designed disruption index, which evaluates the global reorganization of brain networks in group-wise comparisons. We found global differences in structural connectivity between Glaucoma patients and controls, as well as in local graph theoretical measures. These changes extended well beyond the primary visual pathway. Furthermore, group-wise and subject-wise disruption indices were found to be statistically different between glaucoma patients and controls, with a positive slope. Overall, our results support the hypothesis of a whole-brain structural reorganization in glaucoma which is specific to structural connectivity, possibly placing this disease within the recently defined groups of brain disconnection syndrome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.