Abstract

Release of sperm bundles from moth testes is controlled by the local circadian oscillator. The mechanism which restricts migration of sperm bundles to a few hours each day is not understood. We demonstrate that a daily cycle of sperm release is initiated by the migration of folded apyrene sperm bundles through a cellular barrier at the testis base. These bundles have conspicuous concentrations of actin filaments at their proximal end. Inhibition of actin polymerization by cytochalasin at aspecific time of day inhibited sperm release from the testis. Likewise, application of double-stranded actin RNA specifically inhibited sperm release. This RNA-mediated interference (RNAi) lowered the pool of actin mRNA in tissues involved in sperm release. The decline in mRNA levels resulted in the selective depletion of F-actin from the tip of apyrene sperm bundles, suggesting that this actin may be involved in the initiation of sperm release. Combined results of RNAi experiments at physiological, cellular and molecular levels identified unique cells that are critically involved in the mechanism of sperm release.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.