Abstract

Two low phytic acid (lpa) mutants have been developed previously with the aim to improve the nutritional value of rice (Oryza sativa) grains. In the present study, the impacts of lpa mutations on grain composition and underlying molecular mechanisms were investigated. Comparative compositional analyses and metabolite profiling demonstrated that concentrations of both phytic acid (PA) and total phosphorus (P) were significantly reduced in lpa brown rice, accompanied by changes in other metabolites and increased concentrations of nutritionally relevant compounds. The lpa mutations modified the expression of a number of genes involved in PA metabolism, as well as in sulfate and phosphate homeostasis and metabolism. Map-based cloning and complementation identified the underlying lpa gene to be OsSULTR3;3. The promoter of OsSULTR3;3 is highly active in the vascular bundles of leaves, stems and seeds, and its protein is localized in the endoplasmic reticulum. No activity of OsSULTR3;3 was revealed for the transport of phosphate, sulfate, inositol or inositol 1,4,5 triphosphate by heterologous expression in either yeast or Xenopus oocytes. The findings reveal that OsSULTR3;3 plays an important role in grain metabolism, pointing to a new route to generate value-added grains in rice and other cereal crops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.