Abstract
Although cisplatin is a frequently used cancer chemotherapeutic drug, its effectiveness is hindered by the development of resistance in cancer cells. In order to understand the reason(s) for this resistance, the mechanism of uptake of cisplatin into cells must be characterized. While several previous studies showed structural differences between cisplatin-sensitive and resistant cells, the influence of microfilaments, known to affect transport of molecules into cells, and the influence of certain biophysical characteristics of the plasma membrane needed clarification. We show that resistant human epidermal carcinoma (KB-CP20) and liver carcinoma (BEL-7404-CP20) cells become relatively more resistant if their already weak microfilaments are degraded by cytochalasin B treatment (.5-2 microM). The sensitive counterparts of these cells with intact microfilaments are not significantly affected by this treatment. We also show that the "fluidity" of the plasma membrane and the membrane potential of the sensitive and resistant cells studied do not appear to influence the uptake of cisplatin into the cells. Our results suggest that the status of the microfilament system influences the mechanism of uptake of cisplatin into cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.