Abstract

Chemotactic motility is involved in the virulence of many pathogenic bacteria. In order to understand the role of chemotactic motility of Vibrio harveyi in cellular processes and virulence, mini-Tn10/Kan transposon-induced mutants with deficient chemotactic motility were constructed, screened, and identified. Sequence analysis revealed that the 465-bp fragment (Gen Bank accession number HM630274) flanking the transposon insertion site in mutant TS-CM1 had the highest identity (96.9%) with a hypothetical protein gene of V. harveyi ATCC BAA-1116 and the second-highest identity (91.8%) with the pgk gene of V. parahaemolyticus RIMD 2210633. In another mutant, TS-CM2, 356 bp of transposon-flanking sequence (Gen Bank accession number HM630275) also showed the highest identity (94.6%) with a hypothetical protein gene of V. harveyi ATCC BAA-1116 and the second-highest identity (92.4%) with the flaB gene of V. alginolyticus HY9901. Studies on virulence-related biological characteristics such as growth, motility, adhesion, and infectivity of themutants showed that disruption of either the flagellin gene or energy metabolism gene led to subsequent loss of chemotactic motility and changes in growth, motility, adhesion, and virulence of the pathogenic V. harveyi. Hence, the flagellin gene and crucial energy metabolism gene played an important role in the chemotactic motility of V. harveyi.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.