Abstract

Structural distortions frequently occur in materials, either periodically (ferroelectric or antiferroelectric) or in local areas (domain boundaries, surfaces/interfaces, dislocations). Measuring atomic displacements from an average lattice is of crucial importance for analyzing structural distortions and their connections to physical properties. Conventionally, the displacements are measured atom-by-atom by fitting atomic-resolution images with two-dimensional gaussian functions. Here, we exhibit an efficient method, named Displacement Separation Analysis, DSA in short, to directly separate atomic displacements from an average lattice based on Fourier space filtering. Using antiferroelectric AgNbO3 as a model system, we demonstrate the consistence between DSA and gaussian fitting. The suppression of polarization at interfacial region of h-LuFeO3/α-Al2O3 heterostructure and the emergence of modulation structure in LuFe2O4+x is then revealed using DSA, attesting the implication of DSA in unveiling structural distortions either locally or periodically. Inspired by the simple principle of DSA, such method can be used for any atomic-resolution images, including TEM, STM, and AFM images to exhibit the atomic displacement intuitively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.