Abstract

This paper provides a comprehensive validation of a displacement-based seismic design procedure proposed in a companion paper for reinforced masonry shear-wall structures. For this purpose, a full-scale, two-story reinforced masonry specimen was tested on a shake table to examine the global and local behaviors of a low-rise reinforced masonry building designed by the proposed displacement-based procedure, and to validate the analytical tool used in the design process. This specimen successfully resisted repeated ground motions with intensities up to the maximum considered earthquake (MCE). Its performance on the shake-table demonstrates that a reinforced masonry structure designed, detailed, and constructed according to the proposed displacement-based design procedure can resist MCE earthquakes without collapse even though it may suffer severe damage. In critical regions of this specimen, elements detailed in accordance with displacement-based requirements showed more inelastic deformation capacity than the deformation limits imposed by the displacement-based design provisions proposed here. The proposed procedure produces structures that behave according to design expectations, even though severely damaged.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.