Abstract

This article presents a method for the direct displacement-based design of steel moment resisting frames, with specific consideration of beam-to-column joint characteristics. The method can be used for steel frames having any type of beam-to-column joints, from rigid and full-strength to semi-rigid and partial-strength. The plastic rotation capacity of the joints is explicitly taken into account within the performance criteria for the design. To assess the accuracy of the method in controlling performance, case study structures were first designed and subsequently analysed using non-linear dynamic analysis with a set of real accelerograms. For all cases, the mean of peak inter-storey drift demands and the mean of peak plastic rotation demands on joints were controlled in accordance with the limits set during design. The results obtained demonstrate that the proposed method is appropriate for the performance-based seismic design of steel moment resisting frames with different joint typologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.