Abstract
A simple dispersive liquid-liquid microextraction (DLLME) protocol for the determination of 15 organochlorine pesticides residues in honey is proposed. The selected pesticides were separated using gas chromatography and detected by electron capture (ECD) or ion trap mass spectrometry (GC-IT/MS). Several parameters affecting the extraction efficiency namely type and volume of organic extraction solvent, type and volume of disperser solvent, sample pH, ionic strength, extraction time and centrifugation speed were systematically investigated. The final DLLME protocol involved the addition of 750 μL acetonitrile (disperser) and 50 μL chloroform (extraction solvent) into a 5 mL aqueous honey solution followed by centrifugation. The sedimented organic phase (chloroform) were analysed directly by GC-IT/MS or evaporated and reconstituted in acetonitrile prior to the GC-ECD analysis. The analytical performance of the GC-ECD and GC-IT/MS methods was compared and discussed. Under the selected experimental conditions, the enrichment factors varied between of 36 and 114. The limits of detection (LOD) were in the range of 0.02-0.15 μg L(-1) (0.4-3 ng g(-1)) for GC-ECD and 0.01-0.2 μg L(-1) (0.2-4 ng g(-1)) for GC-IT/MS which is adequate to verify compliance of products to legal tolerances. The proposed method was applied to the analysis of the selected organochlorine pesticides residues in various honey samples obtained from Greek region. Mean recoveries were ranged from 75% to 119% while the precision was better than 20% in both methodologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.