Abstract

We derive the dispersion relation for periodic traveling water waves propagating at the surface of water possessing a layer of constant non-zero vorticity γ1 adjacent to the free surface above another rotational layer of vorticity γ2 which is adjacent to the flat bed. As a by-product we give necessary and sufficient condition for local bifurcation in the frame-work of piecewise constant vorticity. Moreover, we give estimates on the speed at the free surface of the bifurcating laminar flows. These estimates involve only the vorticity γ1, the mean depth of water d and the depth at which the jump in vorticity occurs. A stability result for certain laminar flows is also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.