Abstract

Spectrally encoded endoscopy (SEE) uses single optical fiber and miniature diffractive optics to allow imaging through a miniature probe. Utilizing Fourier-domain interferometry, SEE was shown capable of video-rate three-dimensional imaging, albeit at limited depth of field due to the limited spectral resolution of the detection spectrometer. We show that by using dispersion management at the reference arm of the interferometer, the tilt and curvature of the field of view could be adjusted without modifying the endoscopic probe itself. By controlling the group velocity dispersion, this technique is demonstrated useful for imaging specimen regions which reside outside the system's depth of field. This approach could be used to improve usability, functionality and image quality of SEE without affecting probe size and flexibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.