Abstract

We present a numerical study of the dispersion characteristic modification of nonlinear photonic crystal fibers infiltrated with liquids. A photonic crystal fiber based on the soft glass PBG-08, infiltrated with 17 different organic solvents, is proposed. The glass has a light transmission window in the visible-mid-IR range of 0.4-5μm and has a higher refractive index than fused silica, which provides high contrast between the fiber structure and the liquids. A fiber with air holes is designed and then developed in the stack-and-draw process. Analyzing SEM images of the real fiber, we calculate numerically the refractive index, effective mode area, and dispersion of the fundamental mode for the case when the air holes are filled with liquids. The influence of the liquids on the fiber properties is discussed. Numerical simulations of supercontinuum generation for the fiber with air holes only and infiltrated with toluene are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.