Abstract

A new propagation layered media composed of a piezoelectric thin film and a substrate plate is studied in this work. The displacement profiles, phase velocities, and electromechanical coupling coefficients of Lamb wave modes are theoretically investigated for the c-axis oriented AlN films on cubic silicon carbide (3C-SiC) plates. Due to the different material properties of the AlN and 3C-SiC layers, the displacement profiles of Lamb wave modes are not simply antisymmetric or symmetric with respect to the neutral axis. According to the displacement profiles, the plate acoustic wave modes in the layered plate are classified as quasi-Lamb wave modes. Some high-order quasi-Lamb wave modes in the layered plate have larger electromechanical couplings than the corresponding Lamb wave modes in an AlN thin plate. In addition, the third quasi-symmetric (QS <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> ) Lamb wave mode exhibits a low motional impedance (R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sub> ) of 91 ohm and a high quality factor (Q) up to 5510 at a frequency (f <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</sub> ) of 2.92 GHz, resulting in the highest f <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</sub> ·Q product, 1.61×10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">13</sup> Hz, among suspended piezoelectric thin film resonators reported to date.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.