Abstract

AbstractWe investigate the dispersive properties of a non‐conforming finite element method to solve the two‐dimensional Helmholtz and elastodynamics equations. The study is performed by deriving and analysing the dispersion relations and by evaluating the derived quantities, such as the dimensionless phase and group velocities. Also the phase difference between exact and numerical solutions is investigated. The studied method, which yields a linear spatial approximation, is shown to be less dispersive than a conforming bilinear finite element method in the two cases shown herein. Moreover, it almost halves the number of points per wavelength necessary to reach a given accuracy when calculating the mentioned velocities in both cases here presented. Copyright © 2003 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.