Abstract

The potential of drifting Macrocystis pyrifera kelp for transporting associated animals and plants long distances around the southern oceans was assessed by anchoring kelp holdfasts off the Tasmanian coast in 1985, monitoring the turnover of organisms, and relating species survival to water-transport times and species geographic distributions. Although most of the common animal species and approximately half of the plant species associated with Tasmanian M. pyrifera holdfasts were still present on kelp holdfasts after 191 d at sea, very few of these species have been recorded from New Zealand. It therefore seems unlikely that M. pyrifera plants with intact holdfasts are presently drifting to New Zealand. Drifting kelps probably become negatively buoyant in the Tasman Sea because dissolved nitrate concentrations are insufficient for normal plant growth. Moreover, even if some kelp plants do drift to New Zealand it is possible that their holdfasts rapidly disintegrate in the open ocean because of the abundance of the boring isopods Phycolimnoria spp. in Tasmanian holdfasts. In contrast to the restricted distributions of Tasmanian holdfast-inhabiting species, most of the identified species collected from M. pyrifera holdfasts at subantarctic Macquarie Island also occurred 5 000 km west at Kerguelen Island. Because of the extensive ranges of many subantarctic species, the good probability of survival of epifaunal species on drifting kelps, and the high surface-water nitrate concentrations and low holdfast-densities of Phycolimnoria spp. in the higher latitudes, it is likely that M. pyrifera-mediated transport of faunal and floral propagules has recently occurred, and is probably presently occurring, in subantarctic waters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.