Abstract
The limited dispersal ability of earthworms is expected to result in marked genetic isolation by distance and remarkable spatial patterns of genetic variation. To test this hypothesis, we investigated, using microsatellite loci, the spatial genetic structure of two earthworm species, Allolobophora chlorotica and Aporrectodea icterica, in two plots of less than 1 ha where a total of 282 individuals were collected. We used spatial autocorrelation statistics, partial Mantel tests of isolation-by-distance (IBD) and isolation-by-resistance (IBR), and Bayesian test of clustering to explore recent patterns involved in the observed genetic structure. For A. icterica, a low signal of genetic structure was detected, which may be explained by an important dispersal capacity and/or by the low polymorphism of the microsatellite loci. For A. chlorotica, a weak, but significant, pattern of IBD associated with positive autocorrelation was observed in one of the plots. In the other plot, which had been recently ploughed, two genetically differentiated clusters were identified. These results suggest a spatial neighbourhood structure in A. chlorotica, with neighbour individuals that tend to be more genetically similar to one another, and also highlight that habitat perturbation as a result of human activities may deeply alter the genetic structure of earthworm species, even at a very small scale. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114, 335–347.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.