Abstract

AbstractSpatial synchrony is common, and its influences and causes have attracted the interest of ecologists. Spatially correlated environmental noise, dispersal, and trophic interactions have been considered as the causes of spatial synchrony. In this study, we developed a spatially structured population model, which is described by coupled‐map lattices. Our recent investigation showed that trophic correlation of environmental noise was another important factor that affects spatial synchrony. As a supplement, we considered the influence of the color of the environmental noise on the spatial synchrony in this study. The noise color refers to the temporal correlation in the time series data of the noise, and is expressed as the degree of (first‐order) autocorrelation for autoregressive noise. Patterns of spatial synchrony were considered for stable, periodic (quasi‐periodic), and chaotic population dynamics. Numerical simulations verified that the color of the environmental noise is another mechanism that causes spatial synchrony. Generally, the effect of the color of the noise on the synchrony is dependent on the type of dynamics (stable, cyclic, chaotic) present in the population. For cyclic dynamics, simulation results clearly demonstrate that reddened noise has higher synchrony than white noise. The importance of our research is that it enriches the theory of potential causes of spatial synchrony.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.