Abstract
This paper presents a new disparity map refinement process for stereo matching algorithm and the refinement stage that will be implemented by partitioning the place or mask image and re-projected to the preliminary disparity images. This process is to refine the noise and sparse of initial disparity map from weakly textured. The plane fitting algorithm is using Random Sample Consensus. Two well-known stereo matching algorithms have been tested on this framework with different filtering techniques applied at disparity refinement stage. The framework is evaluated on three Middlebury datasets. The experimental results show that the proposed framework produces better-quality and more accurate than normal flow state-of-the-art stereo matching algorithms. The performance evaluations are based on standard image quality metrics i.e. structural similarity index measure, peak signal-to-noise ratio and mean square error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.