Abstract

In the context of specifying the origin of enzyme enantioselectivity, the present study explores the lipase enantioselectivity towards secondary alcohols of similar structure from the perspective of substrate binding. By carrying out molecular mechanics minimization as well as molecular dynamics simulation on tetrahedral reaction intermediates which are used as a model of transition state, we identify an unconventional productive binding mode (PBM)—M/H permutation type for Candida antarctica lipase B (CALB). The in silico results also indicate that different PBMs of the slow-reacting enantiomer do exist in one lipase even when there is little structural differences between substrates, e.g. compounds with Ph or CH 2CH 2Ph group display the M/H permutation type PBM while molecules with CH 2Ph show the M/L permutation type PBM. By relating the PBMs of substrates to the experimentally determined E-values obtained by Hoff et al. [16], we find that disparity in PBM of the slow-reacting enantiomer determines why E-values of substrates with CH 2Ph were lower than E-values of substrates with Ph or CH 2CH 2Ph group. The modeling results also suggest that the “pushed aside” effect of the F atom and Br atom accommodates the medium size substituent of the substrate better in the stereospecificity pocket of the enzyme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.