Abstract

Neutron scattering experiments show significant oxygen disorder in UO2 at temperatures above 2000 K. The nature of the disorder, however, has not been ascertained with certainty. Using atomistic simulations and metrics from statistical mechanics we show that the oxygen anions predominantly hop from one native (tetrahedral) lattice site to another, above a characteristic temperature Tα (∼2000 K). Interestingly, we discover two types of disorder – the first one, which is a measure of the fraction of anions that are displaced from their native sites, portrays a monotonic increase with temperature and shows excellent conformity to neutron scattering data. The second metric based on the mean square displacement of the anions in an isoconfigurational ensemble demonstrates a dynamic self-organization behavior in which the anions are spatially correlated to those with similar mobility. This dynamic self-organization, however, experiences a non-monotonic variation with temperature depicting a maximum near the Bredig or λ-transition. We further establish that the thermodynamic metric cp/T, which is equal to the rate of change of entropy with temperature, is a key entropic indicator of the dynamic self-organization among the oxygen anions in UO2 at high temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.