Abstract

Using a combination of numerical and analytical calculations, we study the disorder-induced zero bias anomaly (ZBA) in the density of states of strongly-correlated systems modeled by the two dimensional Anderson-Hubbard model. We find that the ZBA comes from the response of the nonlocal inelastic self-energy to the disorder potential, a result which has implications for theoretical approaches that retain only the local self-energy. Using an approximate analytic form for the self-energy, we derive an expression for the density of states of the two-site Anderson-Hubbard model. Our formalism reproduces the essential features of the ZBA, namely that the width is proportional to the hopping amplitude $t$ and is independent of the interaction strength and disorder potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.