Abstract
The high voltage LiNi0.5Mn1.5O4 cathode with a disordered spinel structure is synthesized by a glycine-assisted low-temperature reaction follows by a thermal treatment at 750°C, 850°C, and 950°C for 12h. Glycine is used as a chelating agent for the first time to build required environment for shaping the precursor of LiNi0.5Mn1.5O4 materials. The microstructure and morphology of the LiNi0.5Mn1.5O4 product are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller, and transmission electron microscopy. The sample prepares at 750°C reveals small particles with well-defined crystals as confirmed by electron microscopy. Electrochemical results demonstrate that LiNi0.5Mn1.5O4 electrode anneal at 750°C (compare to other two samples) delivers the highest reversible capacity of 110mAhg−1 at 0.2C after 100 cycles with good rate capability. The enhanced electrochemical performance could be attributed to the smaller particle sizes as well as well-defined crystals which provide a directional and shorter diffusion path length for Li+ transportation within the crystals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.