Abstract

In order to clear the relationship between dislocation development and endurance limit in fatigued body-centered cubic (BCC) metals, the automotive grade interstitial-free steel (IF steel) was fatigued near the endurance limit in this study. When cycling just below the endurance limit, the dislocation structures are mainly composed of loop patches, moreover, a few large dislocation cells and dislocation walls can also be found, and thus these structures have no significant effect on fatigue failure. However, once cyclic strain slightly exceeds the endurance limit, the small dislocation cells tend to develop near grain boundaries and triple junction of the grains, and which provide a more appropriate structure for crack growth than do large dislocation cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.