Abstract
We show that stable models of logic programs may be viewed as minimal models of programs that satisfy certain additional constraints. To do so, we transform the normal programs into disjunctive logic programs and sets of integrity constraints. We show that the stable models of the normal program coincide with the minimal models of the disjunctive program thatsatisfy the integrity constraints. As a consequence, the stable model semantics can be characterized using theextended generalized closed world assumption for disjunctive logic programs. Using this result, we develop a bottomup algorithm for function-free logic programs to find all stable models of a normal program by computing the perfect models of a disjunctive stratified logic program and checking them for consistency with the integrity constraints. The integrity constraints provide a rationale as to why some normal logic programs have no stable models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.