Abstract
This paper presents a new computational framework for 3D graphic statics based on the concept of disjointed force polyhedra. At the core of this framework are the Extended Gaussian Image and area-pursuit algorithms, which allow more precise control of the face areas of force polyhedra, and consequently of the magnitudes and distributions of the forces within the structure. The explicit control of the polyhedral face areas enables designers to implement more quantitative, force-driven constraints and it expands the range of 3D graphic statics applications beyond just shape explorations. The significance and potential of this new computational approach to 3D graphic statics is demonstrated through numerous examples, which illustrate how the disjointed force polyhedra enable force-driven design explorations of new structural typologies that were simply not realisable with previous implementations of 3D graphic statics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.