Abstract

This study investigates the effects of chlorine dioxide (ClO2) disinfection on the community structure, regrowth potential, and metabolic product secretion of disinfection-residual bacteria (DRB) in secondary effluent (SE), denitrification filter effluent (DFE), and ultrafiltration effluent (UE). Results show that ClO2 effectively reduces bacteria in SE and UE, achieving log removal values exceeding 3 at 1 mg/L within 30 min. A salient positive correlation (R2 > 0.95) exists between changes in total fluorescence intensity and disinfection efficacy. Post-treatment, Acinetobacter abundance increased in SE, while Pseudomonas decreased in DFE and UE. At lower ClO2 concentrations, Staphylococcus, Mycobacterium, Aeromonas, and Lactobacillus increased in DFE, but decreased at higher concentrations. After storage, bacterial counts in disinfected samples exceeded those in the control group, surpassing 105 CFU/mL. Despite an initial decline, species richness and evenness partially recovered but remained lower than control levels. Culturing DRB for 72 h showed elevated extracellular polymeric substances (EPS) secretion, quantified as total organic carbon (TOC), ranging from 5 to 27 mg/L, with significantly higher EPS in the disinfection group. Parallel factor analysis with self-organizing maps (PARAFAC-SOM) effectively differentiated water sample types and EPS fluorescent substances, underscoring the potential of three-dimensional fluorescence as an indirect measure of ClO2 disinfection efficacy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.