Abstract

ABSTRACTPhytoplankton diversity and community compositions vary across spaces and are fundamentally affected by several deterministic (e.g., environmental selection) and stochastic (e.g., ecological drift) processes. How this suite of different processes regulates the biogeography of phytoplankton remains to be comprehensively explored. Using high-throughput sequencing data and null model analysis, we revealed the ecological processes shaping the latitudinal community structure of three major phytoplankton groups (i.e., diatoms, Synechococcus, and haptophytes) across the Pacific Ocean (70°N, 170°W to 35°S, 170°W). At the basin scale, heterogeneous selection (selection under heterogeneous environmental conditions) dominated the assembly processes of all phytoplankton groups; however, its relative importance varied greatly at the climatic zonal scale, explaining the distinct latitudinal α- and β-diversity among phytoplankton groups. Assembly processes in Synechococcus and haptophyte communities were mainly controlled by physical and nutrient factors, respectively. High temperature drove Synechococcus communities to be more deterministic with higher diversity, while haptophyte communities were less environmentally selected at low latitudes due to their wide niche breadth and mixotrophic lifestyle. Diatom communities were overwhelmingly dominated by the selection process but with low correlation of measured environmental factors to their community compositions. This could be attributed to the high growth rate of diatoms, as indicated by their lower site occupation frequency than predicted in the neutral community model. Our study showed that heterogeneous selection is the main force that shaped the biogeography of three key phytoplankton groups in the Pacific Ocean, with a latitudinal variation of relative importance due to the distinct traits among phytoplankton.IMPORTANCE Phytoplankton are diverse and abundant as primary producers in the ocean, with diversity and community compositions varying spatially. How fundamental processes (e.g., selection, dispersal, and drift) regulate their global biogeography remains to be comprehensively explored. In this study, we disentangled the ecological processes of three key phytoplankton groups (i.e., diatoms, Synechococcus, and haptophytes) along the same latitudinal gradients in the Pacific Ocean. Heterogeneous selection, by promoting species richness and reducing similarity between communities, was the dominant process shaping the communities of each phytoplankton group at the basin scale. However, its relative importance varied greatly among different phytoplankton groups in different climate zones, explaining the uneven latitudinal α- and β-diversity. We also highlight the importance of identifying key factors mediating the relative importance of assembly processes in phytoplankton communities, which will enhance our understanding of their biogeography in the ocean and future patterns under climate changes.

Highlights

  • Phytoplankton diversity and community compositions vary across spaces and are fundamentally affected by several deterministic and stochastic processes

  • We show that the relative importance of environmental selection in Synechococcus varied substantially across climatic zones and was mediated by several physical factors, including temperature, salinity, euphotic layer depth (ELD), and mixed-layer depth (MLD)

  • For the first time, we disentangled the ecological processes of three key phytoplankton groups simultaneously along the same gradients in the Pacific Ocean (PO)

Read more

Summary

Introduction

Phytoplankton diversity and community compositions vary across spaces and are fundamentally affected by several deterministic (e.g., environmental selection) and stochastic (e.g., ecological drift) processes. How this suite of different processes regulates the biogeography of phytoplankton remains to be comprehensively explored. Its January/February 2022 Volume 7 Issue 1 e01203-21 Phytoplankton, including both prokaryotes (e.g., cyanobacteria) and eukaryotes (e.g., diatoms, haptophytes, and dinoflagellates), are diverse primary producers in the ocean. The dynamics of their community structure may have great consequences for global biogeochemical cycles [1]. Different phytoplankton groups (or taxa) have distinct latitudinal diversity, abundance, and community structure [24,25,26]; whether these biogeographic patterns are structured by the action of the same or different ecological processes is much less studied

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.