Abstract

X-ray magnetic circular dichroism (XMCD) has become in recent years an outstanding tool for studying magnetism. Its element specificity, inherent to core-level spectroscopy, combined with the application of magneto-optical sum rules allows quantitative magnetic measurements at the atomic level. These capabilities are now incorporated as a standard tool for studying the localized magnetism in many systems. However, the application of XMCD to the study of the conduction-band magnetism is not so straightforward. Here, it is shown that the atomic selectivity is not lost when XMCD probes the delocalized states. On the contrary, it provides a direct way of disentangling the magnetic contributions to the conduction band coming from the different elements in the material. This is demonstrated by monitoring the temperature dependence of the XMCD spectra recorded at the rare-earth L(2)-edge in the case of RT(2) (R = rare-earth, T = 3d transition metal) materials. These results open the possibility of performing element-specific magnetometry by using a single X-ray absorption edge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.