Abstract

Titanium-zirconium-molybdenum (TZM) alloy was fabricated by using powder metallurgy and rolling techniques. Electrochemical corrosion behavior of the alloy was studied quantitatively using potentiodynamic polarization and scanning electron microscope. Effect of different chloride ions concentrations on corrosion resistance and electrochemical corrosion mechanism on TZM alloy was investigated. Results show that pitting corrosion and intergranular corrosion of TZM alloy mainly occurs in sodium chloride solution. Corrosion generates firstly in the form of pitting corrosion around second phase particles and increases with corrosive media Cl− concentration increasing, and then the intergranular corrosion occurs along grain boundaries and defects. Cl− corrosion can effectively destroy the passive film formed on the sample surface. As the Cl− concentration of corrosive media increases, the corrosion rate of TZM alloy increases until 1.0 mol/L and then decreases. TZM alloy exhibits good corrosion resistance when the concentration of Cl− in corrosive media is 0.5 mol/L or 1.5 mol/L.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.