Abstract

In this paper we describe a face recognition method based on PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis). The method consists of two steps: first we project the face image from the original vector space to a face subspace via PCA, second we use LDA to obtain a linear classifier. The basic idea of combining PCA and LDA is to improve the generalization capability of LDA when only few samples per class are available. Using FERET dataset we demonstrate a significant improvement when principal components rather than original images are fed to the LDA classifier. The hybrid classifier using PCA and LDA provides a useful framework for other image recognition tasks as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.