Abstract

We formulate three current models of discrete-time quantum walks in a combinatorial way. These walks are shown to be closely related to rotation systems and 1-factorizations of graphs. For two of the models, we compute the traces and total entropies of the average mixing matrices for some cubic graphs. The trace captures how likely a quantum walk is to revisit the state it started with, and the total entropy measures how close the limiting distribution is to uniform. Our numerical results indicate three relations between quantum walks and graph structures: for the first model, rotation systems with higher genera give lower traces and higher entropies, and for the second model, the symmetric 1-factorizations always give the highest trace.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.