Abstract

This study proposed a discrete structural optimization method for a framed automotive body. Up to four types of discrete design variables are considered simultaneously, that is, the sizing, cross-sectional shape, topology, and material variables. Firstly, to solve the nonconvex and nonlinear optimization problem, the original non-dominated sorting genetic algorithm, the third version (NSGA-III), is adapted. An improved extreme points identification scheme and a new mutation operator are proposed to stabilize the normalization of the population and accommodate the manufacturing constraints, respectively. Two test problems demonstrate that the modified NSGA-III can handle continuous and discontinuous multiple objective optimization. Subsequently, the classical 10-bar truss is used to illustrate the proposed method. A weight reduction of 4.5 kg is achieved as compared to previous optimal designs in the literature. Finally, a framed automotive body is optimized for maximizing the first order natural frequency and minimizing the total mass, the maximum stresses and the maximum displacements in different load cases and the manufacturing cost. The results obtained by different optimization procedures are presented and discussed. The results demonstrate the feasibility and effectiveness of the proposed method. A weight reduction of 17.59% is achieved while other structural performances satisfy the design requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.