Abstract

AbstractMultiphase chemical reactors with characteristic multiscale structures are intrinsically discrete at the elemental scale. However, due to the lack of multiscale models and the limitation of computational capability, such reactors are traditionally treated as continua through straightforward averaging in engineering simulations or as completely discrete systems in theoretical studies. The continuum approach is advantageous in terms of the scale and speed of computation but does not always give good predictions, which is, in many cases, the strength of the discrete approach. On the other hand, however, the discrete approach is too computationally expensive for engineering applications. Developments in computing science and technologies and encouraging progress in multiscale modeling have enabled discrete simulations to be extended to engineering systems and represent a promising approach to virtual process engineering (VPE, or virtual reality in process engineering). In this review, we analyze this emerging trend and emphasize that multiscale discrete simulations (MSDS), that is, considering multiscale structures in discrete simulation through rational coarse-graining and coupling between discrete and continuum methods with the effect of mesoscale structures accounted in both cases, is an effective way forward, which can be complementary to the continuum approach that is being improved by multiscale modeling also. For this purpose, our review is not meant to be a complete summary to the literature on discrete simulation, but rather a demonstration of its feasibility for engineering applications. We therefore discuss the enabling methods and technologies for MSDS, taking granular and particle-fluid flows as typical examples in chemical engineering. We cover the spectrum of modeling, numerical methods, algorithms, software implementation and even hardware-software codesign. The structural consistency among these aspects is shown to be the pivot for the success of MSDS. We conclude that with these developments, MSDS could soon become, among others, a mainstream simulation approach in chemical engineering which enables VPE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.