Abstract

Plane strain tension analyses of un-notched and notched bars are carried out using discrete shear transformation zone plasticity. In this framework, the carriers of plastic deformation are shear transformation zones (STZs) which are modeled as Eshelby inclusions. Superposition is used to represent a boundary value problem solution in terms of discretely modeled Eshelby inclusions, given analytically for an infinite elastic medium, and an image solution that enforces the prescribed boundary conditions. The image problem is a standard linear elastic boundary value problem that is solved by the finite element method. Potential STZ activation sites are randomly distributed in the bars and constitutive relations are specified for their evolution. Results are presented for un-notched bars, for bars with blunt notches and for bars with sharp notches. The computed stress–strain curves are serrated with the magnitude of the associated stress-drops depending on bar size, notch acuity and STZ evolution. Cooperative deformation bands (shear bands) emerge upon straining and, in some cases, high stress levels occur within the bands. Effects of specimen geometry and size on the stress-strain curves are explored. Depending on STZ kinetics, notch strengthening, notch insensitivity or notch weakening are obtained. The analyses provide a rationale for some conflicting findings regarding notch effects on the mechanical response of metallic glasses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.