Abstract
We analyze certain aspects of the classical dynamics of a one-dimensional discrete nonlinear Schrödinger model with inter-site as well as on-site nonlinearities. The equation is derived from a mixed Klein–Gordon/Fermi–Pasta–Ulam chain of anharmonic oscillators coupled with anharmonic inter-site potentials, and approximates the slow dynamics of the fundamental harmonic of discrete small-amplitude modulational waves. We give explicit analytical conditions for modulational instability of travelling plane waves, and find in particular that sufficiently strong inter-site nonlinearities may change the nature of the instabilities from long-wavelength to short-wavelength perturbations. Further, we describe thermodynamic properties of the model using the grand-canonical ensemble to account for two conserved quantities: norm and Hamiltonian. The available phase space is divided into two separated parts with qualitatively different properties in thermal equilibrium: one part corresponding to a normal thermalized state with exponentially small probabilities for large-amplitude excitations, and another part typically associated with the formation of high-amplitude localized excitations, interacting with an infinite-temperature phonon bath. A modulationally unstable travelling wave may exhibit a transition from one region to the other as its amplitude is varied, and thus modulational instability is not a sufficient criterion for the creation of persistent localized modes in thermal equilibrium. For pure on-site nonlinearities the created localized excitations are typically pinned to particular lattice sites, while for significant inter-site nonlinearities they become mobile, in agreement with well-known properties of localized excitations in Fermi–Pasta–Ulam-type chains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.