Abstract
The ability to group stimuli into perceptual categories is essential for efficient interaction with the environment. Discrete dynamics that emerge in brain networks are believed to be the neuronal correlate of category formation. Observations of such dynamics have recently been made; however, it is still unresolved if they actually match perceptual categories. Using invivo two-photon calcium imaging inthe auditory cortex of mice, we show that local network activity evoked by sounds is constrained to few response modes. Transitions between response modes are characterized by an abrupt switch, indicating attractor-like, discrete dynamics. Moreover, we show that local cortical responses quantitatively predict discrimination performance and spontaneous categorization of sounds in behaving mice. Our results therefore demonstrate that local nonlinear dynamics in the auditory cortex generate spontaneous sound categories which can be selected for behavioral or perceptual decisions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.